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Abstract: The next generation Hurricane Analysis and Forecast System (HAFS) has been
developed recently in the National Oceanic and Atmospheric Administration (NOAA) to accelerate
the improvement of tropical cyclone (TC) forecasts within the Unified Forecast System (UFS)
framework. The finite-volume cubed sphere (FV3) based convection-allowing HAFS Stand-Alone
Regional model (HAFS-SAR) was successfully implemented during Hurricane Forecast Improvement
Project (HFIP) real-time experiments for the 2019 Atlantic TC season. HAFS-SAR has a single large
3-km horizontal resolution regional domain covering the North Atlantic basin. A total of 273 cases
during the 2019 TC season are systematically evaluated against the best track and compared with
three operational forecasting systems: Global Forecast System (GFS), Hurricane Weather Research
and Forecasting model (HWRF), and Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic
model (HMON). HAFS-SAR has the best performance in track forecasts among the models presented
in this study. The intensity forecasts are improved over GFS, but show less skill compared to HWRF
and HMON. The radius of gale force wind is over-predicted in HAFS-SAR, while the hurricane force
wind radius has lower error than other models.

Keywords: tropical cyclones; numerical weather prediction; high resolution tropical cyclone forecasts;
finite-volume cubed sphere (FV3); Hurricane Analysis and Forecast System (HAFS); Stand-Alone
Regional (SAR) models

1. Introduction

A tropical cyclone (TC) is one of the major devastating natural disasters often resulting in loss
of lives and property damage. Numerical weather prediction (NWP) developments, specific to TCs,
have progressed significantly over the last decade. In the United States, the National Hurricane Center
(NHC) makes use of both global and high-resolution regional dynamical models for TC forecast
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guidance during the hurricane season, including the Navy Operational Global Atmospheric Prediction
System (NOGAPS) model, the United Kingdom METeorological (UKMET) model, the Canadian
Meteorological Centre (CMC) model, the Japan Meteorological Agency’s (JMA) Global Spectral Model
(GSM) model, and the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated
Forecast System (IFS) model as global models and the Navy’s Coupled Ocean/Atmosphere Mesoscale
Prediction System for Tropical Cyclones (COAMPS-TC) model as regional models, among others.

Currently, three NWP models are operated by the National Centers for Environmental Prediction
(NCEP) at National Weather Service (NWS), in order to provide the essential guidance for TC prediction
in the United States. These models include a global model known as the Global Forecast System (GFS),
and two regional high-resolution NWP models, both with moving nests, known as the Hurricane
Weather Research and Forecasting model (HWRF), and the Hurricanes in a Multi-scale Ocean-coupled
Non-hydrostatic model (HMON).

The operational GFS underwent a significant upgrade during 2019 to implement a new
dynamical core, known as the Finite-Volume cubed sphere (FV3) developed at the National Oceanic
and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL). FV3
applies the finite volume method on the gnomonic grid on a cubed sphere with computational efficiency.
The FV3-based global model developed in GFDL (fvGFS), using a 13 km resolution, demonstrated
better performance of FV3 for both TC track and intensity forecasts, compared to the previous GFS
spectral model [1]. However, the horizontal resolution of the above-mentioned global models is too
coarse for simulating convective-scale TC structures [2–4]. The high-resolution convection-allowing
NWP models are able to resolve important inner-core processes, such as eyewall replacement cycles
and the structures within the eye, eyewall, and spiral rainbands of the TC [5–11].

The operational high-resolution regional HWRF and HMON models have been recently upgraded,
resulting in substantial improvements for TC track and intensity forecasts [12]. The very high resolutions
of the innermost nested domains of HWRF and HMON (1.5 km and 2 km, respectively) allow the forecast
to better resolve deep convection and the TC inner core structures. At the same time, the moving nest
introduces complications and uncertainties which include, but are not limited to, the re-initialization
(zeroing) of the nested domain variables when storm moves, the discrepancy from the interpolation of
parent domain to the moving nest, the treatment of topography and land-sea mask with the moving nest,
and the sensitivity of TC forecasts skill to the dimension of the moving nest. The current operational
HWRF and HMON are also not designed to process multiple movable nests within the same parent
domain, which limits their ability to forecast multiple TCs simultaneously, while also possibly missing
important TC to TC interactions during the instances of multiple TCs. The experimental basin-scale
HWRF developed in Atlantic Oceanographic and Meteorological Laboratory (AOML), in collaboration
with Environmental Modeling Center (EMC) and Developmental Testbed Center (DTC), is able to
address this deficiency of HWRF and HMON TCs interaction, using multiple moving nests in a larger
(e.g., basin-scale) parent domain. This configuration, as demonstrated, improves track forecasts when
compared to the operational HWRF during instances of multiple TCs [13,14].

To accelerate improvements in TC intensity and track forecasts within a unified global and regional
modelling framework, known as the Unified Forecast System (UFS), the next generation hurricane
forecasting system, the Hurricane Analysis and Forecast System (HAFS), has been developed amongst
collaborators within NOAA. HAFS utilizes the FV3-based global-regional modelling system for TC
prediction. The system can be applied in either a high-resolution stand-alone regional configuration
(HAFS-SAR), or using a uniform global model with a high-resolution static nest configuration
(HAFS-global-nest). A high-resolution FV3 with a setup similar to the HAFS-global-nest has been
successfully tested for both seasonal deterministic TC forecasts [15] and ensemble forecast case
study [16]. The global-nest FV3 has demonstrated skillful track forecasts and improved intensity
forecasts, when compared to the spectral GFS, during the 2017 hurricane season [15]. The intensity
performance, however, is less skillful than HWRF. While the global-nest FV3 suggests promising results,
running both a global model and a nest domain concurrently is computationally expensive. HAFS-SAR



Atmosphere 2020, 11, 617 3 of 16

applies the FV3 dynamic core on a regional grid with external lateral boundary conditions, and can
reduce the computational cost significantly, by removing the necessity of the parent global domain used
for the HAFS-global-nest configuration. The limited area HAFS-SAR model has been configured for
the North Atlantic (NATL) basin for TC forecasts (Figure 1), using a single large domain with improved
planetary boundary layer (PBL) and surface flux parameterization schemes designed/calibrated
specifically for TC simulations. A resolution of 3 km is chosen for convection-allowing TC forecasts.

The HAFS-SAR was successfully implemented during 2019 Hurricane Forecast Improvement
(HFIP) real-time experiments for the NATL TC season. This was the first time the FV3-based SAR was
systematically tested specifically for TC forecasts. In this study, the performance and forecast skill of
HAFS-SAR will be evaluated and compared to the three NOAA operational NWP models. In Section 2,
the real-time experiment is described, while the intensity, track and storm size (wind-radii) forecasts
are evaluated in Section 3. The HAFS-SAR performance is further examined for two high-impact
TC events during the 2019 NATL TC season in Section 3, while Section 4 summarizes the results of
this study.
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Figure 1. Topography (m) of the high-resolution stand-alone regional configuration
(HAFS-SAR) domain.

2. Experiments

The FV3 dynamical core [17,18] for HAFS-SAR includes a non-hydrostatic finite volume solver
using a Lagrangian vertical coordinate [19]. The HAFS-SAR has a single large domain of 2880 × 1920
grid-cells. The domain is centered at 62◦ W, 22◦ N, spanning 60◦ from south to north and 106.5◦

from east to west. The north Atlantic basin covers the main development region (MDR) for TCs,
and extends northward as far as to Newfoundland, in order to capture TC genesis and extratropical
transition. The HAFS-SAR is based on one of the 6 faces of the global cubed sphere C768 (~13 km
grid spacing globally) and is further refined by a factor of 4. The computational grid is gnomonic,
and has an average cell size (defined as square root of cell area) of 3.2 km. The cell size gradually
increases from 2.6 km around the domain edges to 3.6 km in the domain center. The HAFS-SAR uses
64 vertical levels on a sigma-pressure hybrid coordinate with the lowest model level at about 25 m
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above the surface and the top isobaric level of 0.2-hPa. The terrain data are interpolated from the 30-s
(~1 km) USGS GMTED2010 dataset.

Initial and boundary conditions were interpolated from the 2019 operational global FV3-based
GFS (~13-km) onto the 3-km HAFS SAR domain. Lateral boundary conditions (LBCs) were provided
every 3 h from the same global GFS forecasts. In this study, no data assimilation is performed for
the HAFS-SAR.

The HAFS-SAR physics parameterizations include the Hybrid Eddy-Diffusivity Mass-Flux
(HEDMF) PBL scheme [20]. The eddy diffusivity over water in the HEDMF PBL scheme is modified
based on observations, to better resolve the TC boundary layer processes in TC, similar to that used in
HWRF [21]. The exchange coefficient of momentum Cd and heat Ck for the surface flux parameterization
follows the same formula of the operational HWRF over water under strong wind conditions, in
order to be more consistent with the observations [22]. The microphysics scheme is the GFDL
6-category hydrometeors scheme [23], while the land surface parameterization is the Noah land surface
scheme [24]. The radiation schemes are RRTMG longwave and shortwave parameterizations [25,26],
and the cumulus convection is turned off at the 3-km resolution. Finally, the SST is provided by the GFS
Near SST (NSST) scheme, which predicts the vertical profile of sea temperature between the surface
and a reference level.

The 2019 real-time HAFS-SAR experiments started 0000 UTC 12 July and ended 0000 UTC 01
November, covering eighteen storms consisting of TC Barry through TC Rebekah. The real-time
experiments were initialized at 0000, 0600, 1200, and 1800 UTC each day and ran for 126 h. The GFDL
vortex tracker [22,27] was used to generate the TC track information, including TC center locations,
the maximum 10-m wind and minimum pressure intensities, and TC wind radii of gale force wind
(17.5 m s−1), damaging force wind (25.7 m s−1) and hurricane force wind (32.9 m s−1). The model
products in GRIB2 format and the Automated Tropical Cyclone Forecasting System [28] (ATCF:
the application to automate and optimize TC forecasts for operational centers) track information were
delivered at 0930, 1530, 2130, and 0330 (next day) UTC every day during the TC season. A total of
273 TC cases are included. In order to evaluate the performance of HAFS-SAR real-time experiments,
the forecasted TC track, intensity, and size are verified against the best track data from the NHC
and compared with the operational GFS, HWRF, and HMON systems. The models for comparison
are listed in Table 1. Both the HWRF and HMON models have vortex initializations implemented,
while additional inner core data assimilation is used in HWRF (Table 1). The HWRF model is coupled
with the Princeton Ocean Model (POM) and the HMON model is coupled with the Hybrid Coordinate
Ocean Model (HYCOM). As demonstrated in the HWRF model, both the inner core data assimilation
and the ocean coupling can potentially further improve the TC track and intensity forecasts [29,30].
The data assimilation/vortex initialization and ocean coupling capability are being developed for
HAFS-SAR. These new capabilities are expected to present the more realistic vortex structure and ocean
response for the HAFS-SAR in the future.

Table 1. Four models for verification in the 2019 North Atlantic tropical cyclone (TC) season.

HAFS-SAR GFS HWRF HMON

Global/regional Regional Global Regional Regional
Dynamic core FV3 FV3 WRF-NMM 1 NMMB 2

Resolution ~3 km ~13 km 13.5-4.5-1.5 km 18-6-2 km

VI 3/inner core DA N/A N/A VI+inner core
DA VI

Ocean coupling N/A N/A POM 4 HYCOM 5

1 Nonhydrostatic Mesoscale Model-(NMM). 2 Nonhydrostatic Mesoscale Model on B grid-(NMMB). 3 Vortex
initialization (VI) 4 Princeton Ocean Model (POM) 5 Hybrid Coordinate Ocean Model (HYCOM).



Atmosphere 2020, 11, 617 5 of 16

3. Results

The seasonal statistics of HAFS-SAR track, intensity and size forecasts are presented and compared
with the GFS, HWRF, and HMON in this section.

3.1. Track Forecast

The track forecasts are verified by computing the track error defined as the great circle distance
between the predicted TC center and the best track location. Track errors are plotted every forecast
6 h until 48 h, and then every 24 h until 120 h for each of the four models. The initial location errors
for HWRF and HMON are smaller than GFS and the HAFS-SAR (Figure 2a), because of the vortex
relocation methods of HWRF and HMON [22]. Both HAFS-SAR and GFS have relatively small initial
track errors of 22 km, even without relocating TC, and likely benefit from the cycled satellite data
assimilation in GFS. Beginning from the 6 h forecast, the track error growth of HAFS-SAR is slower than
the other three models. The resulting track error of HAFS-SAR is consistently the smallest from 12–120
forecast hours. The 95% confidence intervals (CI) are also plotted for the track error as the vertical bars
(Figure 2a). The error of HAFS-SAR is significantly smaller than the other three models during 24–72 h
forecast periods, when the upper limit of the 95% CI of HAFS-SAR is always lower than the lower
limit of the other three models (Figure 2a). Among the three operational models, HWRF appears to
have the largest track error, while GFS was the second best performer for track forecasts.

The track forecast skill is also calculated by comparing the track error of each model to HWRF
as follows:

Skill = (errorHWRF − errormodel)/errorHWRF (1)

A positive (negative) value represents a smaller (larger) forecast error and better (worse)
performance compared to HWRF. HAFS-SAR, GFS and HMON all show positive track forecast skill
at most forecast hours (Figure 2b), indicating improvement over HWRF. The track forecast improvement
of HAFS-SAR, when compared to HWRF, is roughly 20% during the 12–120 h forecast period.

The total track forecast error can be further decomposed into along-track and cross-track directional
error, to examine the contribution from the two respective components. The along-track error of
HAFS-SAR is very close to HMON and smaller than GFS and HWRF prior to 96 h (Figure 2c).
HAFS-SAR demonstrates more advantage in reducing cross-track error (Figure 2d). After 24 h,
the HAFS-SAR cross-track error is always the smallest of the four models out to 120 h, with the error
at 72 h being only half those of HWRF and HMON, thus suggesting that cross-track component
contributes more to the track forecast improvement than along-track component.

The along- and cross-track biases are illustrated in Figure 2e,f, to further examine track forecast
skills. Positive (negative) along-track bias means the predicted storm moved faster (slower) in
the along-track direction than the observed TC (as denoted by the best track). Positive (negative)
cross-track bias represents how far to the right (left) the predicted storm is relative to the observed track.
The cross-track bias is very low for HAFS-SAR along with GFS prior to 72 h (Figure 2f), suggesting
HAFS-SAR stays closely in the observed TC moving direction. After 72 h, a positive cross-track bias is
observed for both HAFS-SAR and GFS, implying that both models move to the right of the observed
track. The along-track bias is negative for most of the models during most of the forecast lead times
(Figure 2e), suggesting slower moving speed along the observed TC direction.

In summary, HAFS-SAR performs noticeably better for the track forecast metric, when compared
to the operational GFS, HWRF, and HMON. The improvement is mostly from the reduction of
the cross-track errors. The comparison of HAFS-SAR to GFS is of particular interest, given that both
models use the same dynamical core and initial conditions. The boundary conditions for HAFS-SAR
are also from the GFS forecasts. The 3-km high resolution likely contributes to the track forecast
improvements (Figure 2 of Xue et al. [4]). Further, HAFS-SAR also applies a different horizontal
advection scheme than GFS, and also does not apply a cumulus convective parameterization scheme.
Both factors may affect the large scale environment forecast and, thus, the TC track forecasts.
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3.2. Intensity Forecast

Intensity forecasts, described by the maximum 10-m wind speed, for HAFS-SAR are examined
and compared to GFS, HWRF, and HMON (Figure 3). Due to the lack of inner-core data assimilation
and vortex initialization contained in HWRF and HMON [22], both HAFS-SAR and GFS have a relatively
large initial intensity error of 6.2 m s−1, compared to errors around 1.5 m s−1 for HWRF and HMON
(Figure 3a). The simulated TC of HAFS-SAR spins up quickly with its intensity error decreasing to
4.6 m s−1 in 6 h, and reduced to 4.1 m s−1 at 12 h. The error of HAFS-SAR grows during the 12–72 h
forecast period, appears to saturate by 72–96 h, and decreases during 96–120 h period. The use of
high-resolution models is expected to improve the intensity forecasts by simulating more realistic
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convective-scale inner-core structures [3]. Beginning at 6 h, the intensity error of HAFS-SAR is always
lower than GFS, and is only 56% of GFS at 120 h. The performance of HAFS-SAR is significantly better
than GFS from 6–24 h and at the lead time of 42 h (error bars in Figure 3a). When compared with HWRF
and HMON, the intensity forecasts of the 3-km HAFS-SAR falls behind the finer resolution models
before day 5. At 120 h, HAFS-SAR has the lowest intensity error among all four models. It is also likely
a result of its vastly improved track forecast at this forecast lead time (Figure 2). The intensity forecast
skill (Figure 3b) is consistent with the trend of intensity errors. HAFS-SAR has a negative forecast
skill compared to HWRF except at 120 h and also has a lower skill compared to HMON before 72 h.
However, the skill is always higher than GFS at all forecast lead times.

The wind bias indicates whether the respective NWP model predicts a stronger (positive) or
weaker (negative) storm. Most of the models under-predict the intensity with negative wind bias in
most of forecast hours (Figure 3c). The bias of HAFS-SAR is similar to HWRF during the 12–72 h
period and turns into a positive 1.5 m s−1 at 120 h, suggesting a slight over-prediction of TC intensity.
The number of verifying forecasts is lower at 120 h as well, which may cause a sampling bias
(e.g., stronger storms last longer).
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The comparison of intensity error between HAFS-SAR, and other models, demonstrates advantages
and limitations of the 3-km resolution grid for TC intensity forecasts. When the resolution is reduced
from the ~13-km of GFS to the ~3-km of HAFS-SAR, the improvement is clear, since the GFS resolution
is too coarse to resolve the inner core storm structure. However, a grid-spacing resolution of 3 km
is considered marginally cloud resolving, and appears to lag behind the higher resolution of 1.5-km
and 2-km in HWRF and HMON intensity forecasts, respectively. Increasing the resolution of HAFS-SAR
to 1.5–2 km has the potential to further improve the intensity forecasts for strong TC events (not shown).
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The inner core data assimilation, when implemented in the future, could also potentially improve
the intensity forecasts.

3.3. Size Forecast

Accurate TC size forecasts can help storm surge prediction and estimation of damaging wind
areas. The maximum radial extents of gale force wind (17.5 m s−1), damaging force wind (25.7 m s−1),
and hurricane force wind (32.9 m s−1) are verified against the observed radii (e.g., the best track; Figure 4)
to evaluate TC size prediction. The initial gale and damaging force wind radii errors of HAFS-SAR
are relatively small (Figure 4a,c), but increase in 6 h, leading to larger forecast errors than GFS, HWRF,
and HMON in most lead times. The wind radii bias is also illustrated in Figure 4. A positive (negative)
bias indicates that the model predicts a larger (smaller) storm at a specific wind radius. The gale force
wind radius bias of HAFS-SAR is always positive (Figure 4b), indicating an over-prediction of storm size
or the outer radius when other models underpredict the gale force wind radii. The difference between
HAFS-SAR and other models is statistically significant from 6–96 h (error bars in Figure 4a). The damaging
force wind radius bias of HAFS-SAR is comparable to other models (Figure 4d). For the hurricane force
wind radius, and closer to the inner core region, HAFS-SAR performs better than the other models
during the 12–120 h period, as illustrated in Figure 4e. The bias is also low at the hurricane force wind
radius in HAFS-SAR forecasts, compared to HWRF and GFS (Figure 4f).

The relatively large size error for gale force wind radius from HAFS-SAR is possibly related to
the horizontal advection scheme that is more diffusive than that of the GFS. The advection scheme
in GFS is a fast unlimited fifth-order scheme with the built-in 2∆x filter, while HAFS-SAR chooses
a Piecewise Parabolic Method (PPM) scheme with an intermediate-strength monotonicity constraint,
due to the instability issue [31]. The scale-aware cumulus convection parameterization, which is
turned off in the HAFS-SAR experiments, can also help to reduce the gale force wind radius error,
as demonstrated by other experiments (not shown).

Figure 4. Cont.
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Figure 4. The 2019 seasonal storm size statistics for HAFS-SAR, GFS, HWRF and HMON: (a,c,e) gale
force (17.5 m s−1), damaging force (25.7 m s−1) and hurricane force (32.9 m s−1) wind radii error;
(b,d,f) gale force (17.5 m s−1), damaging force (25.7 m s−1), and hurricane force (32.9 m s−1) wind radii
bias. The error bar in (a,c,e) represents a 95% confidence interval. Case number is denoted in brown.

3.4. Weak vs. Strong Storms

In this section, TCs are categorized as strong or weak storms, based on the initial maximum 10-m
wind speed intensity, above or below 25.7-m s−1 (damaging force wind). Track and intensity forecasts
errors are examined for these two groups in order to understand the performance of HAFS-SAR for
different storm intensities (Figure 5). The track error for the strong storms is similar to or slightly
smaller than that of all storms (Figure 5a). For the weak storms, the track error of HAFS-SAR is
larger. HAFS-SAR has an average track error of 482 km (Figure 5c) on 120 h, which is much higher
than the average track error of 259 km for the strong storms (Figure 5a). Further, the track error of
HAFS-SAR is higher than GFS for weak storms, but still lower than HWRF and HMON. In general,
GFS has the best performance of track forecast for the weak storms. It also should be noted that the case
number of weak storms is much fewer than strong storms after 60 h.

For the intensity forecasts of strong storms, HAFS-SAR has the intensity error close to that of all
storms (Figure 5b). The HAFS-SAR intensity error for weak storms is, however, much lower than
that of strong storms (Figure 5d). The error at 72 h forecasts is 4.6 m s−1, only approximately half of
the 10.3 m s−1 error for strong storms. The intensity error for HAFS-SAR is comparable to HWRF
and HMON during the 12–48 h forecast lead times. From 72–96 h, the intensity error of HAFS-SAR is
even lower than HWRF and HMON (Figure 5d).

As shown above, strong storms dominate both seasonal track and intensity forecast error for
HAFS-SAR, with more cases at later forecast lead times. HAFS-SAR shows better forecast skill for weak
storms intensity forecasts and strong storms track forecasts. The results are encouraging given that
the high-resolution TC models (e.g., HWRF) tend to over-predict the intensity for weak storms [32].

Figure 5. Cont.
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Figure 5. Track error for the 2019 hurricane season for strong storms (a) and weak storms (c); intensity
error for the 2019 hurricane season for strong storms (b) and weak storms (d). See Section 3.4 for
the definitions of strong and weak storms. The error bar in (b,d) represents a 95% confidence interval.
Case number is denoted in brown.

3.5. TC Barry and TC Dorian

During the 2019 NATL TC season, two hurricanes made landfall in the United States and caused
considerable damage and economic loss. The track and intensity forecasts of HAFS-SAR for TC Barry
and Dorian are verified against the best track, along with the comparison to GFS, HWRF, and HMON,
in order to evaluate the performance of these two high-impact events.

3.5.1. TC Barry

TC Barry began as a mesoscale convective vortex over the central US, and became a tropical
depression in the northern Gulf of Mexico [33]. After intensifying into a tropical storm, Barry reached
category 1 hurricane status on 13 July, and made landfall at Marsh Island, Louisiana, with a very
asymmetric structure. The track and intensity forecast errors for TC Barry are illustrated in Figure 6.
The HAFS-SAR track forecast shows clear improvements over GFS, HWRF, and HMON within
the 24–96 h forecast lead times (Figure 6a). The HAFS-SAR track forecast error is always below 74 km,
while the GFS error is above 222 km after 72 h. Both HWRF and HMON have track errors over 370 km
at 96 h. The composite Barry track forecasts of all cases for the four models are shown in Figure 7.
GFS, HWRF, and HMON all have a rightward bias in the track forecasts (Figure 7a–c). HAFS-SAR
follows the observed track closely, and predicts the Louisiana landfall location in close proximity to
the observed location in multiple forecast cases (Figure 7d). HAFS-SAR also performs well for Barry in
intensity forecasts, as shown in Figure 6b. The maximum wind error of HAFS-SAR is below those of
other models presented here at most forecast lead times. We notice that the intensity errors of HWRF
and HMON are much higher than both GFS and HAFS-SAR for Barry, which is likely due to their
erroneous track forecasts particularly at longer lead times (Figure 7b,c).

Affected by both the northerly shear and dry air intrusion at mid-levels, TC Barry maintained a very
asymmetric structure at landfall (Figure 6c). The rainband structure at 1200 UTC 13 July is mostly along
the east and the south side of the TC center. HAFS-SAR is able to capture the convective asymmetry
at the 60 h forecast lead time for the forecast initialized at 0000 UTC 11 July, with the rainband extending
from the borders of Mississippi and Alabama into the Gulf of Mexico. However, the convection to
the south of TC center is over-predicted in HAFS-SAR (Figure 6d). The forecasted TC center (29.1◦

N, 92.3◦ W) was at the southwest of the observation (29.3◦ N, 91.9◦ W), and the distance between
the model and observed locations is 44 km at the valid time.
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Figure 7. The composite track forecasts of (a) GFS, (b) HWRF, (c) HMON and (d) HAFS-SAR for TC
Barry from 1200 UTC 10 July to 1200 UTC 14 July 2019. The observed best track is in black. The darker
red colors represent later initialized times.

3.5.2. TC Dorian

TC Dorian originated from a tropical wave off of the West Coast of Africa on 19 August,
and intensified rapidly as a powerful hurricane as it moved near to the Bahamas [34]. Dorian passed
east of Puerto Rico and made Bahamian landfall as a very strong category 5 hurricane. After stalling
over the Bahamas for approximately 24 h, Dorian recurved to the northwest and moved along
the Florida coast, before it made a United States landfall at Cape Hatteras, North Carolina. Dorian
finally underwent an extratropical transition during 6–7 September.

The HAFS-SAR track forecast outperforms GFS, HWRF, and HMON, as illustrated in Figure 8a.
The HAFS-SAR forecast error is the lowest among all models during the 24–120 h period. The superiority
of HAFS-SAR is mostly achieved from the cross-track component at shorter lead times (before 96 h),
and from along-track component at longer lead times (not shown). GFS, HWRF, and HMON incorrectly
predicted the Florida landfall of Dorian in multiple cases (Figure 9a–c). HAFS-SAR appears to predict
the recurvature along the Florida coast more accurately, with none of its cases making landfall in
Florida (Figure 9d). The intensity forecast error of HAFS-SAR for Dorian is consistent with the total
seasonal statistics for strong storms statistics (Figure 8b), when compared with other models.
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4. Conclusions

With the ongoing advancements for the HAFS, the convection-allowing FV3-based HAFS-SAR
was successfully implemented during the 2019 real-time NATL TC season. It is of great interest to
examine the performance of the new regional hurricane forecast system with the same FV3 dynamic
core in NOAA’s unified modelling framework. The intensity, track, and storm size forecasts were
systematically evaluated for 273 cases, and compared to both the observed (e.g., best) track data
and the GFS, HWRF, and HMON.

HAFS-SAR demonstrate noticeable improvements of track forecasts compared to GFS, HWRF,
and HMON at almost all forecast lead times. The track forecast skill of HAFS-SAR improves roughly
20% over HWRF. HAFS-SAR is more effective at reducing the cross-track error than the along track
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component. The cross-track bias of HAFS-SAR is close to zero prior to 72 h, and has a rightward bias
for longer forecast lead times.

The initial intensity error (6.2 m s−1) of HAFS-SAR is similar to GFS, due to the lack of inner core
data assimilation and/or vortex adjustment as done in HWRF and HMON. The spin-up during the first
6 h reduces the HAFS-SAR intensity error to 4.1 m s−1, and the improvement over GFS is consistent
at longer forecast lead times. When compared to both HWRF and HMON, the HAFS-SAR intensity
forecasts demonstrate less skill, likely related to the superior horizontal resolution of the operational
HWRF and HMON. The intensity forecasts of HAFS-SAR are improved in additional experiments
when the horizontal resolutions are increased from 3 km to 2 km and 1.5 km for individual storms.
The sensitivity of intensity forecasts to vortex initialization, model physics, dynamics, and grid
specification are also being further investigated.

The verification of gale force, damaging force, and hurricane force wind radii reveals that
HAFS-SAR performs better than the other three models for the hurricane force wind (32.9-m s−1) radius.
HAFS-SAR over-predicts the size of the TC (e.g., the 17.5 m s−1 gale force wind radius), compared
to GFS, HWRF, and HMON. The storm size of HAFS-SAR is sensitive to the horizontal advection
schemes of FV3, and the use of a less diffusive scheme is being investigated to improve the HAFS
storm size forecasts.

The seasonal statistics for HAFS-SAR track and intensity forecasts were also examined for strong
and weak storms, based on the initial intensity. The track forecast error is lower for strong storms,
while weak storms have better intensity forecast performance. HAFS-SAR also demonstrates promising
results for the track forecasts during two high-impact 2019 TC events: TC Barry and Dorian.

The successful implementation of HAFS-SAR during 2019 HFIP real-time demonstration provides
an important step toward the efforts for building up the next generation high-resolution TC forecasting
system. The systematic evaluation of HAFS-SAR demonstrates great potential for the FV3-based
convection-allowing regional models toward improving TC forecasts. A new data assimilation system
is under development for HAFS, to further improve the initial vortex structure by assimilating TC inner
core observations, which are expected to reduce the intensity forecasts errors. The future development
of ocean coupling for HAFS will also enhance the TC forecasting capability, by introducing realistic
ocean response to TCs.
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